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SUMMARY

The Pacific crabapple (Malus fusca) is a wild relative of the commercial apple (Malus 3 domestica). With a

range extending from Alaska to Northern California, M. fusca is extremely hardy and disease resistant. The

species represents an untapped genetic resource for the development of new apple cultivars with enhanced

stress resistance. However, gene discovery and utilization of M. fusca have been hampered by the lack of

genomic resources. Here, we present a high-quality, haplotype-resolved, chromosome-scale genome assem-

bly and annotation for M. fusca. The genome was assembled using high-fidelity long-reads and scaffolded

using genetic maps and high-throughput chromatin conformation capture sequencing, resulting in one of

the most contiguous apple genomes to date. We annotated the genome using public transcriptomic data

from the same species taken from diverse plant structures and developmental stages. Using this assembly,

we explored haplotypic structural variation within the genome of M. fusca, identifying thousands of large

variants. We further showed high sequence co-linearity with other domesticated and wild Malus species.

Finally, we resolve a known quantitative trait locus associated with resistance to fire blight (Erwinia amylo-

vora). Insights gained from the assembly of a reference-quality genome of this hardy wild apple relative will

be invaluable as a tool to facilitate DNA-informed introgression breeding.

Keywords: Malus, genome assembly, crop wild relative, genomic resource, Erwinia amylovora, copy num-

ber variation.

INTRODUCTION

The Pacific crabapple (Malus fusca), one of four native

North American species, is found in the Pacific Northwest

ranging from Alaska and British Columbia to California

(USDA Agricultural Research Service, 2015). These hardy

trees routinely grow in conditions in which the vast major-

ity of cultivated apple (Malus 9 domestica Borkh.) cultivars

cannot survive and reproduce in; M. fusca can withstand

winters of �46°C or colder (Fiala, 1994), can grow on beach

heads, in sandy soils, exposed to brackish water and in

waterlogged conditions (USDA Agricultural Research

Service, 2015; Volk, 2019). Moreover, M. fusca has been

found to be resistant to fire blight (Erwinia amylovora), a

devastating disease that is endemic to North America, but

is now found worldwide (Bonn & van der Zwet, 2000;

Dougherty et al., 2021; Emeriewen et al., 2014).

Many environmental conditions, including those

derived from human-caused climate change, increasingly

burden apple production (Volk, Chao, et al., 2015). For

example, abiotic stress such as water logging and spring

frosts during bloom can lead to reduced yields, disrupted

growth patterns, and in extreme situations, loss of trees
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(Atkinson et al., 2000; Bhusal et al., 2019; Dalhaus et al.,

2020; Gottschalk & Van Nocker, 2013; Schrader et al., 2001;

Torres et al., 2013, 2016; Way et al., 1991). Furthermore, in

addition to abiotic stresses, apple suffers from other devas-

tating diseases apart from fire blight, such as apple scab,

bitter pit, and cedar apple rust, as well as other pests (e.g.,

codling moth). These can additionally reduce yields or the

market value of fruit (MacHardy, 1996; Way et al., 1991). To

alleviate these production limitations, plant breeders strive

to impart genetic resistance or resilience into improved

cultivars. However, in apple, this process has been limited

by breeding bottlenecks resulting in high interrelatedness

of many cultivated varieties and breeding lines (Migicovsky

et al., 2021; Muranty et al., 2020).

One approach to overcome this problem is to intro-

duce novel genetics from crop wild relatives (CWRs). One

successful example of CWR hybridization in apple was the

introduction of resistance to apple scab caused by the fun-

gus Venturia inaequalis (Gessler & Pertot, 2012). To that

end, M. floribunda selection 821 was used to develop

hybrids with M. 9 domestica which, ultimately, were used

to identify a resistance locus named Vf (Hough et al., 1953;

Williams, 1966). While these opportunities are afforded by

the fact that M. 9 domestica readily hybridizes with multi-

ple wild relatives, this process is limited by the consider-

able effort needed to purge undesirable traits and linkage

drag from wild introgressions. This is in part due to the

lack of genomic resources in wild species, the high hetero-

zygosity due to self-incompatibility, and the long genera-

tion time in apple (Migicovsky et al., 2021; Sakurai et al.,

2000; Volk, Henk, et al., 2015).

Introgression breeding and genome editing, offer

additional opportunities for further improvement of culti-

vated apples using genetics from wild species, and there

has been a concerted effort, in recent years, to develop

genomic resources in apple and its wild relatives (Chen

et al., 2019; Daccord et al., 2017; Khan et al., 2022; Li,

Wang, et al., 2022; Sun et al., 2020; Velasco et al., 2010;

Zhang et al., 2019). This has been bolstered by technologi-

cal advancements that have enabled generating haplotype-

resolved genomes of different progenitor species including

M. sieversii and M. sylvestris (Sun et al., 2020). The Malus

genus consists of 25 to 47 recognized species and addi-

tional hybrids (Robinson et al., 2001). Of those species, M.

fusca and the other North American natives have been iso-

lated from Asian and European gene pools used in the

domestication of apple (Volk, 2019). Thus, M. fusca and its

other North American relatives, offer untapped potential

for unique disease resistance and abiotic tolerance traits.

As part of the effort to expand resources for breeding

and genetics in apples, we report herein the high-quality,

haplotype-resolved genome assembly of the M. fusca

accession PI 589975. We used high-fidelity (HiFi) long

reads, together with high-throughput chromosome

conformation capture (Hi-C) to assemble and phase both

haplotypes of this coastal Alaskan accession, which is

resistant to fire blight, and moderately resistant to apple

scab, as well as potentially other abiotic stresses (Dough-

erty et al., 2021; Fiala, 1994; Khan & Chao, 2017; Papp

et al., 2020; USDA Agricultural Research Service, 2015;

Way et al., 1991). After gene annotation, we compared the

synteny and genome architecture of this assembly to other

domesticated and wild Malus genomes. Lastly, we

explored synteny and presence-absence variance of candi-

date genes identified within the herein resolved fire blight

resistance locus, FB_MFu10 (Emeriewen et al., 2020), in

comparison to other Malus genomes.

RESULTS AND DISCUSSION

We selected to sequence PI 589975 (GMAL 2891) as a rep-

resentative accession for M. fusca, since multiple previous

evaluations indicated that it was hardy and resistant to

both fire blight and apple scab (Khan & Chao, 2017; Papp

et al., 2020) (Figure 1a–c). This accession is one of 2349

accessions in the USDA collection that has been evaluated

for natural fire blight shoot infection, where it is rated as a

“1; Very resistant – no occurrence” (USDA Agricultural

Research Service, 2015). Moreover, Khan and Chao (2017)

conducted a 2-year artificial inoculation study that rated PI

589975 as “resistant” based on necrosis length measure-

ments and natural blight score as “1 – very resistant”. For

apple scab, PI 589975 was rated as “moderately resistant”

based on visual assessment in a replicated block trial eval-

uated across three sampling dates for 2 years (Papp et al.,

2020). PI 589975 was originally sampled from Scow Bay

near Petersburg, Alaska near the edge of woods along the

beach (USDA Agricultural Research Service, 2015;

Figure 1d). The accession was donated to the USDA collec-

tion in August of 1988 by Michael Medalen and is a mem-

ber of the core collection grown on ‘Budagovsky 9’

rootstock (USDA Agricultural Research Service, 2015).

Reference-quality genome assembly

We obtained 95 Gb and 21.7 Gb of sequence for this acces-

sion of M. fusca from Illumina and PacBio HiFi sequencing,

respectively. The Illumina sequencing-based k-mer analy-

sis yielded an estimated genome size of 694 Mb and het-

erozygosity of 0.8% (Figure 1e). Thus, the HiFi sequencing

represented 31.39 coverage from 1.4 million reads, which

is sufficient for de novo haplotype resolved assembly

using HiFiasm (Cheng et al., 2021, 2022). High-quality Hi-C

libraries for M. fusca were extremely difficult to generate

and after several attempts with different kits were still of

consistently of low concentrations, suggesting issues with

extraction and amplification of the proximal DNA contacts.

Regardless, we sequenced one Hi-C library and obtained

~1309 data with sufficient quality for haplotype phasing.

HiFiasm successfully resolved the two haplotype
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assemblies of 682 and 644 Mb in length (Figure S1) and

contig N50 of 18.7 and 21.4 Mb, respectively (Table 1).

Some contigs were near chromosome length, with the

largest contig assembled at 42.3 Mb.

We assessed two different strategies to scaffold this

assembly, (1) a Hi-C-based approach using Salsa2 (Ghurye

et al., 2019), and (2) using a Malus combined linkage

map (Bianco et al., 2014; Catchen et al., 2020; Di Pierro

et al., 2016). Interestingly, the extremely rapid (elapsed

time ~ 30 sec) linkage map-based method achieved better

results than the Hi-C-based approach. For example, the

Salsa2 pipeline produced a mis-join between two chromo-

somes resulting in a chromosome of >70 Mb. Moreover,

the linkage map + Hi-C approach resulted in a greater num-

ber of contigs placed within the 17 chromosome-sized

pseudomolecules, thus yielding a lower total number of

contigs, greater N50s values, and more contiguous scaf-

folds of >1 Mb that more closely corresponded to the base

chromosome number of 17 for Malus (Table S1). We sub-

sequently used the Hi-C data as an orthogonal verification

of the map-based scaffolding. We inspected the Hi-C con-

tact maps with Juicebox (Durand et al., 2016), and found

they showed high proximal interactions with the scaffolds

in contig placement and order and needed only minor

manual curation (Figure S2a,b). This suggests that if avail-

able, a map from a closely related, albeit different species

can be effective in rapidly scaffolding such highly contigu-

ous long-read-based assemblies. Thus, most of the struc-

tural variation between the map and assembly is captured

within the megabase-sized contigs, and the map’s primary

role lies in the orientation and placement of only a few

contigs per chromosomal pseudomolecule.

The two haplotype assemblies (or haplomes) are 94%

and 91% complete based on the estimated genome size.

Merqury k-mer-based analysis showed a completeness

score of 98.2% for the diploid assembly and a QV score of

64.1, the highest to date in any wild Malus species. We

report a complete genome BUSCO (Sim~ao et al., 2015)

score of 98.8 and 98.9% for the two assemblies respec-

tively. The duplicate BUSCO score was 37.2 and 37.4%,

comparable to other Malus spp. (Sun et al., 2020), and

indicative of the relatively recent paleo-duplication event in

Malus (Velasco et al., 2010). In summary, after scaffolding

and decontamination, we obtained two haplotype assem-

bles, which were highly contiguous, nearly complete, and

extremely accurate with lengths of 651 Mb and 634 Mb

and with scaffold N50s of 36.8 and 36.1 Mb, respectively

(Table 1).

Figure 1. (a) Malus fusca accession PI 589975 GRIN-Global identification photograph. (b) Ballon stage blossoms of the living PI 589975 accession in the USDA

Plant Germplasm Repository Unit, Geneva, NY. (c) King bloom stage of the living PI 589975 accession in the USDA Plant Germplasm Repository Unit, Geneva,

NY. (d) Map of the approximate collection position of the PI 589975 in Alaska. Insert is of the specific location of Scow Bay near Petersburg, AK. (e) k-mer

count plot from GenomeScope. The haploid genome size was predicted to be 694 Mb with approximately 56% repetitive sequence and an estimated heterozy-

gosity of 0.8%.
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To further evaluate the assembly contiguity of repeti-

tive sequences, we computed the LAI metric (Ou et al.,

2018) of M. fusca haplotypes and other published apple

genomes/haplotypes (Chen et al., 2019; Daccord et al.,

2017; Khan et al., 2022; Li, Wang, et al., 2022; Linsmith

et al., 2019; Sun et al., 2020; Velasco et al., 2010; Zhang

et al., 2019; Table S2). Our phased haplotypes have the

highest LAI scores and are greater than 20 (“gold” stan-

dard based on Ou et al., 2018), indicating that long termi-

nal repeats (LTRs) and TEs were assembled with high

quality (Table S2). The use of HiFi reads allowed us to

sequence through repeats accurately and enabled assem-

bly of chromosome-scale contigs. As a result, our

assemblies represent one of the highest-quality diploid

pome fruit genome published to date.

Genome annotation

The availability of multiple Malus genomes allowed side-

by-side comparisons of their repeat content and contigu-

ity but required consistent TE annotation for this purpose.

We collected all published Malus genomes and the Euro-

pean pear (Pyrus Communis) genome (Chen et al., 2019;

Daccord et al., 2017; Khan et al., 2022; Li, Wang, et al.,

2022; Linsmith et al., 2019; Sun et al., 2020; Velasco et al.,

2010; Zhang et al., 2019). Together with the two haplo-

types of M. fusca genome, we created a TE annotation for

the Malus genus with the European pear genome as an

outgroup. We found that the Malus genome assemblies

contained between 48.6% to 62.43% TEs, while the Euro-

pean pear genome contained roughly 45.3% (Table S2).

The two M. fusca assemblies fell within this range with

an average TE content of 58% (Table 2). Long Terminal

Repeat (LTRs) retrotransposons were the most abundant

TE within these genomes. The two M. fusca haplotypes

were found to contain 370.54 and 366.02 Mb of annotated

transposable elements (TE), equating to 58.13% and

57.92%, respectively, of each haplotype’s total length as

predicted by the k-mer-based approach (Figure 1e,

Table 2).

Previous exhaustive sequencing of the M. fusca tran-

scriptome (PRJNA267116), including 72 different tissue

types and developmental stages, allowed us an unprece-

dented opportunity to thoroughly annotate the genome of

M. fusca. In total, we annotated 46 622 and 45 853 genes

for each of the haplotype assemblies, respectively (Table 2).

Additionally, using pfam functional annotation we classi-

fied 4234 and 3912 of those genes as TE-related in the two

haplotypes, respectively. Roughly 75% of annotated genes

had an Annotation Edit Distance of less than 0.25 indicat-

ing high support by transcriptional and protein evidence

(Figure S3). A BUSCO analysis of the two annotated tran-

scriptomes indicated 96.8% and 96.6% completeness,

respectively. Additionally, we annotated 947 tRNA and

1495 rRNA genes between the two haplotypes (Table 2).T
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These resources amount to one of the most thoroughly

annotated apple genomes to date (Figure 2a).

Haplotypic polymorphisms and structural variation in

M. fusca

We aligned the two haplotype assemblies against each

other and identified SNPs and large SVs between the two

haplotypes. We found a total of 2 454 873 SNPs and

1 969 639 small InDels. However, high heterozygosity in

plants manifests not only as single nucleotide polymor-

phisms, and recent work in other heterozygous crop spe-

cies (e.g., Mansfeld et al., 2021; Zhou et al., 2019) revealed

that large haplotypic structural variation (SV) contributes

to differences between the haplotypes in these species.

Our highly contiguous M. fusca haplotype assemblies thus

present an opportunity to evaluate the variation between

haplotypes in an outcrossing wild relative of a cultivated

fruit tree. Apart from the small haplotypic differences, we

identified over 18 000 large SVs ranging in size from 50 to

50 000 bp (File S1). These included large insertions, dele-

tions, tandem duplications/contractions, and repeat expan-

sions/contractions (Figure 2b). Even though this is a

conservative, length-limited, estimate of haplotypic SVs,

greater than 77 Mb (~10%) of total genomic space was

impacted by SV. For comparison to another highly hetero-

zygous crop genome analyzed by similar methods, the vol-

ume of haplotypic SVs detected in this assembly was

larger than that observed in the African cassava genome

(Mansfeld et al., 2021), even though heterozygosity in

cassava (~1.4%) was estimated at nearly double that of

M. fusca. This is likely due to the high completeness, conti-

guity, and scaffolded nature of both haplotypes in the

M. fusca assembly, which allows for more accurate and

thorough haplotypic comparisons. This suggests that mod-

ern haplotype-resolved assembly strategies (Cheng et al.,

2021) such as the one used herein, have crucial implica-

tions for the ability to detect these important

haplotypic SVs.

We were especially interested in the 3774 large haplo-

typic deletions observed, as these might cause gene hemi-

zygosity (e.g., Zhou et al., 2019) or impact important gene

function (Table S3). To further validate these large InDels,

we compared short read coverage at the deletion sites to

random (non-deletion) regions of the same size (Figure 2c).

As expected, we found that mapped read coverage in the

deletions was roughly 50%, and significantly different from

that of randomly selected genome regions (10009 boot-

strap KS test, P-value <2.22e-16), suggesting that most

haplotypic deletions identified by sequence alignment are

accurate. We further explored specific examples of large

deletions that overlapped with genes and further validated

these cases by examining inflated insert sizes between

paired reads. Overall, we identified 3853 unique cases

where exons overlapped with a haplotypic deletion

(Figure 2d; Table S4). This included instances of complete

hemizygosity of some genes due to these large deletions.

For example, a 42 kb heterozygous deletion on chromo-

some 01 causes hemizygosity of MfusH1_01g00351, while

a second 25 kb deletion on chromosome 15, removes one

allele of MfusH1_15g02509. Similar structural variation has

been shown to have substantive effects on important agri-

cultural traits. For example, berry color in Chardonnay

grape is likely altered due to hemizygosity at the MybA

locus (Zhou et al., 2019). The above two validated deletions

also remove the entire upstream regions for

MfusH1_01g00352 and MfusH1_15g02509, respectively.

Large haplotypic deletions have been also implicated in

impacting gene expression profiles by modifying their cis-

regulatory landscape (Mansfeld et al., 2021; Sun et al.,

2020), as well as have important consequences for the epi-

genomic landscape (Zhong et al., 2022). Using this assem-

bly, gene hemizygosity can now be taken into account

when attempting to introgress traits from M. fusca in

breeding efforts. Future research should thus explore the

impacts of these large haplotypic SVs on allele-specific

expression in regard to important traits in M. fusca and

how these might be useful to breeders.

Comparing apples to apples: Synteny within Malus

The emergence of 3rd generation sequencing technologies

and improved scaffolding methods (e.g., Hi-C and Omni-C

sequencing), have resulted in numerous high-quality apple

genomes to compare against. The first, high-quality apple

Table 2 Genome annotation statistics

Assembly Haplotype 1 Haplotype 2

Intergenic
LTR - Copia 9.96% 11.16%
LTR - Ty3 15.48% 15.40%
LTR - Unknown 16.17% 14.93%
LINE - L1 0.83% 0.78%
LINE - RTE 0.17% 0.20%
SINE 0.50% 0.49%
TIR-CACTA 2.06% 1.97%
TIR-Mutator 4.57% 5.31%
TIR-PIF Harbinger 2.31% 2.63%
TIR-Tc1 Mariner 0.39% 0.18%
TIR-hAT 3.02% 2.98%
Helitron 2.67% 1.88%
Total % 58.13% 57.92%
Total bp 370.54 Mb 366.02 Mb

Genic
% Complete BUSCO genes 97.5 96.6
Complete single copy BUSCO 1006 1010
Complete duplicate BUSCO 557 549
Fragmented BUSCO 14 13
Missing BUSCO 37 42

Genes 46 622 45 853
tRNA genes 475 472
rRNA gene 673 822

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. This article has been contributed
to by U.S. Government employees and their work is in the public domain in the USA.,
The Plant Journal, (2023), 116, 989–1002

Genome of the Pacific Crabapple Malus fusca 993

 1365313x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16433 by C

ochraneC
hina, W

iley O
nline L

ibrary on [14/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



genome developed using long-reads was GDDH13, a dou-

bled haploid of Golden Delicious, and it serves as an

inbred reference genome (Daccord et al., 2017). We aligned

M. fusca haplotype 1 to GDDH13 to identify regions of high

sequencing similarity and length. Even though M. fusca

has been kept separate from the rest of the domestication

history of apple, we still observe high sequence similarity

and co-linearity between M. fusca and M. 9 domestica

(Figure 3a). We identified 2 474 476 SNPs and 1 400 493

small indels as well as 17 467 large SVs (affecting 114

Mbp) between the species (Figure S4, File S2). Similar

species-specific variations have been shown to underlie

useful crop improvement traits. In tomato, for example, SV

between wild and domesticated material was shown to

impact fruit size and volatile composition (Alonge et al.,

2020). Thus, the genome assembly herein will support

future work to establish the role of SV on similar traits in

Malus.

We also performed gene synteny analysis with two

wild progenitors of domesticated apple, M. sieversii and

M. sylvestris (Sun et al., 2020). Comparisons of chloroplast

genomes indicate that M. fusca is closely related to these

species, which suggests Asiatic origins for M. fusca (Niki-

forova et al., 2013; Robinson et al., 2001; Volk, Chao, et al.,

Figure 2. Malus fusca genome assembly annotation and haplotype comparisons. (a) Distribution heat maps of annotated features across all 17 chromosomes

(genes, TEs-Transposable Elements, and SVs-Structural Variations). The relative cumulative length of each feature type was calculated within a 100 Kbp window.

(b) Size distribution of different haplotypic SV within the two haplotypes. (c) WGS read coverage between deletions vs random positions within the genome.

The difference in distance distributions was evaluated by a 10009 bootstrapped Kolmogorov–Smirnov (KS) test. (d) Examples of large haplotypic deletions that

contain annotated genes within the SV, which result in hemizygous genes. Gray histograms represent depth of coverage (right y-axis) of short reads mapped to

the haplotype 1 assembly. Reads pairs spanning the identified deletions are highlighted in black and the size of the insert between pairs is denoted by the posi-

tion vs. the left y-axis. Reads paired with dotted lines indicate split reads that map to both sides of the deletion. Read pairs in red indicate sequence duplications.

Gene models are denoted in blue.
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2015; Volk, Henk, et al., 2015). Thus perhaps, these wild

species were only recently separated geographically by the

submersion of the Beringia land bridge, that connected

Asia to North America (Routson et al., 2012; Wil-

liams, 1982). Indeed, we observed high syntenic relation-

ships between the three species (Figure 3b). However,

several macro-scale variations were found, including large

inversions and translocations. Most of the variation from

M. fusca was shared by the other wild species, however,

some species-specific translocations and inversions were

observed. For example, several inversions were observed

on chromosome 03 that were shared between M. fusca

and the two other wild apples, but the translocation

between M. fusca chromosome 16 and M. sieversii chro-

mosome 13 was specific to that comparison. Taken

together, the relatively high whole-genome synteny and

limited macro-variations support the Asiatic origins of

M. fusca (Nikiforova et al., 2013; Robinson et al., 2001;

Figure 3. Comparative genomics within Malus and the FB_Mfu10 fire blight resistance locus. (a) Alignment length and sequence similarity between M. fusca

haplotype 1 and M. 9 domestica GDDH13. (b) Gene synteny between the M. fusca genome and wild apple species M. sieversii and M. sylvestris genomes

(purple = inversions, yellow = translocations). (c) Phylogenetic tree and peptide alignments of genes encoding G-type lectin S-receptor-like serine/threonine-

protein kinases within the FB_Mfu10 locus in M. fusca, M. 9 domestica cultivars, and M. sieversii. (d) Microsynteny at the Mfu10 locus. Copy number variation

of G-type lectin S-receptor-like genes within the FB_Mfu10 locus associated with fire blight resistance in M. fusca (center) compared to susceptible M. sieversii

(top right), and M. 9 domestica Golden Delicious (top left), Honeycrisp (bottom left), and Gala (bottom right). Orthologs of G-type lectin S-receptor-like serine/

threonine-protein kinase genes are annotated by locus id and syntenic genes are annotated by color between the four genomes. Gene colors in panels (c and d)

match to show the phylogeny-based synteny inference. Gene fragments with sequence similarity to these receptors are also denoted but shaded in light gray.
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Volk, Chao, et al., 2015; Volk, Henk, et al., 2015). More pop-

ulation genetic work, focused on whole genome evolution,

should be performed in the future to better understand the

relationship between these wild species. It will be interest-

ing to explore how selection and cultivation of M. fusca by

indigenous people in the Pacific Northwest of North Amer-

ica (Wyllie & de Echeverria, 2013), and its isolation from

the domestication history of M. 9 domestica, have

impacted traits that may be utilized in future improvement

of apple cultivars and rootstocks.

Resolving the fire blight resistance locus (FB_Mfu10)

Apart from the unique climate and temperature cline that

M. fusca has adapted to (Routson et al., 2012), the geo-

graphic localization of M. fusca in North America has

potentially allowed for important co-evolution with Erwinia

amylovora. This native North American bacterium causes

the disease fire blight and is the most important constraint

on pome production in the world (Norelli et al., 2003; Van

der Zwet et al., 2012). Importantly, most M. fusca acces-

sions are tolerant or resistant to fire blight (Dougherty

et al., 2021), and indeed a noted resistance locus was iden-

tified on M. fusca chromosome 10 through screening of

segregating populations derived from crosses of M. fusca

with the susceptible M. x domestica cultivar Idared (Emer-

iewen et al., 2017). In that research, a genetic map was

developed positioning a QTL on Chromosome 10

(FB_Mfu10) that explained 66% of the variation (Emeriewen

et al., 2017, 2020). Further analysis of that region using

Illumina- and Nanopore-sequenced BACs, identified a

potential candidate gene, as well as other repetitive frag-

ments of high sequence similarity to the candidate gene

(Emeriewen et al., 2018, 2022). We sought to leverage our

highly contiguous assembly of this fire blight resistant

M. fusca accession to help in resolving this important locus

and further analyze the genes therein, which likely contrib-

ute to this resistance trait.

Within the fine-mapped boundaries identified by

Emeriewen et al. (2018) we identified several genes includ-

ing a tandem duplication array consisting of four copies

(MfusH1_10g02031, MfusH1_10g02036, MfusH1_10g02040,

and MfusH1_10g02042) of the G-type lectin S-receptor-like

serine/threonine-protein kinase genes implicated by Emer-

iewen et al. (2018) and (2022). Since similar resistance

receptors (i.e., R-genes) are often part of such tandem

duplications; we hypothesized that apart from sequence

polymorphism, copy number variation (CNV) within this

locus could potentially contribute to the resistance pheno-

type. We thus performed micro-synteny level comparisons

between the resistant M. fusca and three susceptible M. x

domestica cultivars (Honeycrisp, Golden Delicious, and

Gala) (Daccord et al., 2017; Khan et al., 2022; Sun et al.,

2020). We observed CNV in genes encoding these

receptor-like genes that correlated with reported resistance

phenotypes. While the resistant M. fusca carries four cop-

ies of this R-genes, ‘Honeycrisp’ contains three, ‘Golden

Delicious’ has two full and one fragmented gene, and

finally, ‘Gala’ contains two copies of which one is a trun-

cated fragment (Figure 3d). ‘Gala’ is moderate to highly

susceptible, ‘Honeycrisp’ is moderately susceptible to

moderately resistant, and ‘Golden Delicious’ is moderately

resistant (Dougherty et al., 2021; Kostick et al., 2019). How-

ever, it should be noted that the GDDH13 assembly is of a

doubled haploid of ‘Golden Delicious’ and thus only repre-

sents the haplotype of this cultivar.

We expanded the comparative genomics analysis of

FB_Mfu10 locus to compare M. fusca to the other

sequenced wild Malus relatives – M. sieversii and M. syl-

vestris (Sun et al., 2020). The accessions of M. sieversii (PI

613981) and M. sylvestris (PI 633825) are reportedly sus-

ceptible and resistant to fire blight, respectively, presenting

an ideal opportunity to test our hypothesis (USDA Agricul-

tural Research Service, 2015; B. Gutierrez personal commu-

nication). M. sieversii was found to have two copies of the

G-type receptor gene within the locus while M. sylvestris

had one large (>8000 bp) ortholog annotated, likely repre-

senting three copies misjoined as one gene (Figure S5).

This result lends support to our hypothesis that CNV corre-

lates with the resistance phenotype. However, M. sylvestris

may only contain three copies which are similar to the sus-

ceptible Honeycrisp and Golden Delicious alleles. Thus,

sequence variation that affects gene function or expression

may also contribute to the resistance phenotype. This type

of variation is evident in the sequence alignment and phy-

logenetic relationship between the genes (Figure 3c). Alter-

natively, M. sylvestris might have other loci contributing to

resistance elsewhere in the genome. Similar examples of

CNV of R-genes have been reported in maize (Chavan

et al., 2015), soybean (Cook et al., 2012; Lee et al., 2015),

and R-genes were found to be enriched for CNV in the

genome of M. 9 domestica (Boocock et al., 2015). Addi-

tionally, Linkage Group 10 has been previously implicated

in resistance to fire blight within a mapping population of

M. 9 domestica generated from ‘Florina’ 9 ‘Nova Easygro’

(Le Roux et al., 2010), suggesting some contribution of

genes on this chromosome already within the M. 9

domestica germplasm.

Previously, Fahrentrapp et al. (2013) and (2018) specu-

lated that the single candidate genes that underlie fire

blight resistance loci in Malus spp. are not products of co-

evolution with the Erwinia due to their lack of positioning

within clusters of paralogs (i.e., arrays). However, the

results presented by Emeriewen et al. (2022) and our

genome support a co-evolutionary origin of the fire blight

resistance in M. fusca. Our assembly demonstrates that

the Emeriewen et al. (2022) candidate R-gene was located

within a tandem array of similar R-genes, which also span

into other Malus spp. and domesticated cultivars. Taken
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together, it can be hypothesized that the FB_Mfu10 locus

underwent selection for increased CNV of the R-gene in

response to co-evolution with Erwinia in their overlapping

habitats. Furthermore, it can be hypothesized that other

North American species of Malus (M. angustifolia, M. coro-

naria, and M. ioensis) co-evolved even stronger resistance

due to a longer evolutionary history with Erwinia in the

pathogen’s center of origin in the eastern North America

(McGhee & Sundin, 2012; Stukenbrock & McDonald, 2008;

Van Der Zwet, 2006; Zeng et al., 2018). In support of this

hypothesis, M. angustifolia was found to exhibit lower sus-

ceptibility to natural infection by Erwinia than M. fusca

(Dougherty et al., 2021). Exploring this locus in other native

North American Malus species should help shed light on

this possibility and help identify crucial alleles that confer

higher and more durable resistance to infection.

Conclusion

The herein-described haplotype-resolved genome and

annotation of M. fusca will add to the many recent devel-

opments in Malus genomics. Moreover, it provides an

example of the opportunity that is afforded by increased

access to long-read sequencing and improved genome

assembly, scaffolding, and annotation methods in generat-

ing high-quality genomes for CWRs. Importantly for this

work, our high-quality genome provides a valuable

resource for understanding the genetic basis of important

traits in this species and in the genus at large, such as dis-

ease resistance and stress tolerance, which are crucial for

apple breeding programs moving forward. Furthermore,

this study also highlights the significance of preserving

wild apple relatives as a source of genetic diversity for

future breeding efforts.

METHODS

Plant materials

For genomic DNA (gDNA) extractions, dormant scion cuttings of
PI 589975 were obtained from the USDA Malus Collection at the
United States Department of Agriculture (USDA) Plant Genetic
Resources Unit (PGRU) located in Geneva, NY, USA. The cut ends
of the dormant branches were placed into a beaker with a rehydra-
tion solution (Rose 100, Floralife, Waterboro, SC) using the manu-
facturer’s recommended concentration and placed under long-day
conditions at 21°C. Once bud-break was achieved and expanded
leaves reached 3 cm in length, the branches were transferred to
dark conditions for 48 h at 21°C. Leaves were then excised using a
razor blade, weighed, and split into 1 g samples. Tissue samples
were immediately flash-frozen in liquid N2 and stored at �80°C.
Additional leaves were collected in early sprin, when fresh growth
was observed. This tissue was shipped overnight from the USDA
Malus Collection, weighed and split into 0.25 g samples, and
immediately flash frozen in liquid N2 and stored at �80°C. Plant
material of PI 589975 (seeds, propagation material, and tissue
samples) can be obtained through the USDA GRIN-Global U.S.
National Plant Germplasm System. Additional biological replicate
trees are being established at the USDA Agricultural Research

Service (ARS) Appalachian Fruit Research Station (AFRS) in Kear-
neysville, WV. Future material requests from these trees can be
made to the corresponding authors.

DNA extraction

Genomic DNA (gDNA) and high-molecular-weight (HMW) DNA
were extracted from frozen dark-treated leaf tissues. For each
extraction, replicates of 0.25 g of frozen leaf tissue were ground
into a fine powder using a mortar and pestle chilled using liquid
N2. For high-depth short-read whole-genome sequencing (WGS),
gDNA was extracted using a Plant Pro DNA extraction kit (Qiagen,
Germantown, MD) following the manufacturer’s protocol. Follow-
ing extraction, DNA samples were cleaned and concentrated to
improve quality using a Zymo Genomic DNA Clean & Concentra-
tion kit (Irvine, CA). Purified gDNA was checked for quality and
quantity on a Nanodrop Spectrometer (Thermo Fisher Scientific,
Waltham, MA) and Qubit 4 Fluorometer (Thermo Fisher
Scientific, Waltham, MA). For the extraction of HMW DNA for
long-read sequencing, Qiagen Genomic-tip 100/G kit was used fol-
lowing the protocol developed by Driguez et al. (2021). Extracted
HMW DNA was checked for quality and quantity on a Nanodrop
Spectrometer and Qubit 4 Fluorometer.

Library preparation and sequencing

First, we obtained high-depth (~1009) and high-quality short read
sequence data. This sequencing of gDNA was carried out using an
Illumina HiSeq platform (Illumina, San Diego, CA) with a read
length of 150 bp in a paired-end format. Library preparations and
sequencing were performed by GeneWiz (South Plainfield, NJ).
For PacBio (Menlo Park, CA) sequencing, we employed the HiFi
protocol on a Sequel II system using a single SMRT cell. PacBio
HiFi library preparation and sequencing were performed at the
University of Maryland Institute of Genome Sciences (Baltimore,
MD). Lastly, Hi-C libraries were prepared using the Phase Genomic
Proximo Plant Kits (Seattle, WA) and sequenced on a MiSeq and
HiSeq Illumina platform by GeneWiz.

K-mer-based genome size estimation

Adapters on the raw Illumina short-reads were removed by the
sequencing provider, and duplicate reads were removed using
beam-dedupe software (Dai & Guan, 2020). To estimate genome
size and heterozygosity, k-mers were counted using the Illumina
WGS dataset with the software KMC 3 (v3.0) (Kokot et al., 2017)
using the parameters ‘-k21 -t10 -m64 -ci1 -cs1000000’. We then
exported the resulting k-mer count histogram into GenomeScope
(v2.0) following default instructions (Ranallo-Benavidez et al.,
2020).

Assembly and scaffolding

HiFi FASTQ files were analyzed for adapter contamination using
the HiFiAdapterFilt (v2.0.0) (Sims et al., 2022) and quality
using FASTQC (v0.11.9) (Andrews, 2010).

HiFi reads were then assembled using the HiFiasm (v0.16.1)
assembler with the Hi-C paired-read option enabled to facilitate
phasing of the contigs (Cheng et al., 2021).

Once assembly was complete, each individual haplotype
assembly was scaffolded using Chromonomer (v.1.13) with link-
age map markers from M. 9 domestica (Bianco et al., 2014;
Catchen et al., 2020; Di Pierro et al., 2016). Prior to scaffolding,
marker sequences were aligned to the haplotype FASTAs using
bwa mem (v0.7.17-r1188) (Li & Durbin, 2009), and a pre-scaffold
agp file was produced using the fasta2agp.py script from
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Chromonomer. The output agp files from Chromonomer were
then converted to a Juicebox assembly file using Phase Genomics
agp2assembly script (https://github.com/phasegenomics/juicebox_
scripts). Assembly statistics were assessed using Merqury (v1.3),
Busco (v.5.3) using the embryophyta odb10 database, and gt seq-
stat (v1.6.2) (Gremme et al., 2013; Rhie et al., 2020; Sim~ao et al.,
2015).

Draft scaffolds were then validated by Hi-C contact matrixes.
For this validation, Hi-C reads were mapped and filtered following
the Arima Pipeline (https://github.com/ArimaGenomics/mapping_
pipeline) (Ghurye et al., 2017). Mapped reads were then processed
using Phase Genomics Juicebox utility Matlock (https://github.
com/phasegenomics/matlock) and sorted following Phase Geno-
mics suggested protocols. The sorted links file and Chromonomer
assembly files were then passed through the 3D-DNA run-assem-
bly-visualizer script to generate a Juicebox editable assembly file
(https://github.com/aidenlab/3d-dna/blob/master/visualize/
run-assembly-visualizer.sh). Any mis-joins or inversions in the
scaffolds were then corrected in Juicebox (v1.11.08) by manual
curation (Durand et al., 2016). Finalized scaffold assembly files
were then used to generate a new representative FASTA using the
contig sequences using the juicebox_assembly_converter script
(https://github.com/phasegenomics/juicebox_scripts). As an addi-
tional, independent validation of our scaffolding process, we com-
pared scaffolds generated using Arima pipeline processed Hi-C
reads and Salsa2 (v2.3) scaffolding pipeline (Ghurye et al., 2019).
Scaffolding success was evaluated visually by Juicebox (v2.20.00)
and by generating assembly statistics with gt seqstat.

The haplotype FASTA was then aligned to GDDH13 v1.1
assembly using nucmer from the MUMmer package (v4.0.0beta2)
(Marc�ais et al., 2018), to assign scaffolds with known chromosome
numbers. Chromosome05 was reverse-complemented to allow for
easy comparisons between apple genomes. Plastid decontamina-
tion of the phased assemblies was done using the blobtools
(v1.1.1) following the published protocols (Laetsch & Blax-
ter, 2017). Additionally, during upload to the NCBI database, the
system flagged 10 scaffolds in haplotype 1 as having additional
mitochondrial contamination from foreign biological origins and
thus were removed from the final assembly.

Genome annotation

The annotation of transposable elements (TE) for each genome was
first conducted using EDTA (v1.9.6) (Ou et al., 2019) under default
parameters except the ‘--species others’ option. In order to better
compare repeat landscape contiguity across different Malus species
(for the purpose of quality assessment) we annotated TEs, filtered,
and consolidated the results using panEDTA (Ou et al., 2022). To fur-
ther annotate non-LTR retrotransposons in M. fusca, we identified
exemplar LINE elements using RepeatModeler2 (v2.0.1) (Flynn et al.,
2020), and SINE elements using AnnoSINE (Li, Jiang, & Sun, 2022).
The resulting exemplar LINE and SINE elements were combined to
become the nonLTR library, which was supplied to EDTA via the --
curatedlib parameter to reannotate theM. fusca genome. The quality
and contiguity of repeat assembly were determined using the LTR
Assembly Index (LAI) metric (Ou et al., 2018) from the LTR_retriever
software (v2.9.0) (Ou & Jiang, 2018).

For annotation of the gene space, a comprehensive approach
using MAKER (v2.31.10) was applied (Holt & Yandell, 2011). Tran-
script evidence was assembled from publicly available RNA-seq
libraries generated for a gene expression atlas (Rogers & Van
Nocker, 2013) of Malus fusca (NCBI Bioproject PRJNA267116).
This transcriptional data was generated from a USDA accession of
Malus fusca PI 589941. As this dataset contains more than 200 Gb

of data, to provide EST evidence for annotation, 100 M pairs of
reads were semi-randomly pulled from the BioProject’s corre-
sponding SRAs using VARUS (v1.0.0) (Stanke et al., 2019). This
approach ensures sufficiently high coverage across the genome
while limiting data transfer. Reads were then mapped to each
chromosome-only haplotype using STAR (v2.7.8a) aligner with
the options ‘--outSAMstrandField intronMotif’ and ‘--
alignIntronMaxenabled 10 kb’ (Dobin et al., 2013). Transcripts for
each haplotype were then assembled from the read alignments
using StringTie2 (v1.3.5) (Kovaka et al., 2019).

FASTA sequences of the StringTie2 assembled transcripts
were used as input into the first round of evidence-based annota-
tion using MAKER2. Next, first-round annotations were extracted
using the extract_anno_evi.sh script and used to train ab initio
gene predictors SNAP (v2006-07-28) and Augustus (v3.3.2) (Hoff &
Stanke, 2019; Korf, 2004). A second round of ab initio prediction
was conducted using optimized transcripts from the first round of
prediction and used as input into a final run of MAKER2. Annota-
tions of rRNA and tRNA features used RNAmmer (v1.2) and
tRNAscan-SE (v2.0.7) with default options (Chan & Lowe, 2019;
Lagesen et al., 2007). Additionally, any genes with 80% of mRNA
sequence overlapping with an annotated TE that did not have any
pfam functional annotations, were labeled as TE-related in the
gene annotation.

Synteny analysis

Comparison of gene synteny between the haplotype 1 assembly
and two wild species (M. sieversii and M. sylvestris, Sun et al.,
2020) as well as three M. 9 domestica genomes (GDDH13 v1.1,
Gala, and Honeycrisp; Daccord et al., 2017; Khan et al., 2022; Sun
et al., 2020) was performed with the Python MCScanX pipeline
(v1.1.12) (Tang et al., 2008; Wang et al., 2012). Briefly, annotation
gff files were downloaded from the Genome Database for Rosa-
ceae (GDR) (Jung et al., 2019) and converted to bed format using
jcvi.formats.gff. A pairwise synteny search was performed. To mit-
igate the impact of the recent whole genome duplication in Malus,
only the reciprocal best hits (‘--cscore = 0.99’) were used for estab-
lishing the high-quality synteny blocks utilized in syntenic depth
comparisons and plotting of karyotypes and macrosynteny and
microsynteny plots, as well as syntenic block depths.

Haplotypic structural variation

SVs between the two haplotypes were detected by aligning the
two FASTA files using nucmer with the settings ‘--maxmatch -l
100 -c 500’ (Marc�ais et al., 2018). The resulting gziped delta file
was uploaded to the Assemblytics web interface (http://www.
assemblytics.com/; Nattestad & Schatz, 2016). Due to the difficulty
of distinguishing extremely large SV from translocations or poten-
tial assembly errors, Assemblytics was originally designed to
identify variants of approximately 10 kilobases in size, but in con-
tiguous assemblies, the range may be extended confidently. We
thus used a maximum variant size of 50 kbp. Larger, macro-level
SV between Malus genotypes was also evaluated using synteny
approaches. The results were exported as a bed file and imported
into R (v4.2.2) for plotting. Deletions overlapping genes and exons
were identified using Bedtools intersect (Quinlan & Hall, 2010).
Haplotypic deletions were validated by mapping the short Illumina
reads. First, reads were aligned to the haplotype 1 assembly using
bwa mem with default settings (Li & Durbin, 2009). The average
coverage for deletions was then compared to random non-
deletion regions. Mean coverage across each deletion was calcu-
lated by Bedtools (v2.30.0) ‘coverage -mean’ for each predicted
deletion. Bedtools shuffle was used to collect 1009 random
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non-deletion regions of the same size of each deletion. The cover-
age distributions of deletion and non-deletion regions were com-
pared using a 10009 bootstrapped Kolmogorov–Smirnov test
from the ‘matching’ R package (Sekhon, 2011). The sorted bam file
was then loaded into samplot (v1.3.0) (Belyeu et al., 2021) to visu-
alize selected deletions, and plot the read coverage and identify
discordant mapping and long insert sizes.

Synteny at the FB_Mfu10 resistance locus

To identify the location of the previously reported fire blight resis-
tance locus, the primers for the markers flanking the fine-mapped
region of fire blight resistance on chromosome 10 were extracted
from Emeriewen et al. (2018) and their sequence was aligned to
haplotype 1 using BLASTN (v2.12.0+). Specifically, markers
FR39G5T7xT7y and FR46H22 which were shown to delimit the
locus to 0.33 cM were used to locate the narrowest region. As
multiple BLAST hits were reported, the location was also con-
firmed by BLASTN of a candidate gene reported by Emeriewen
et al. (2022), however the broader region between the markers
was considered for further analysis. The region was then interro-
gated for microsynteny between the M. fusca haplotype 1 and the
respective regions on chromosome 10 from the susceptible M. 9
domestica genomes, including GDDH13 v1.1 (Daccord et al.,
2017), Gala (Sun et al., 2020), Honeycrisp (Khan et al., 2022),
M. sieversii and M. sylvestris (Sun et al., 2020). Because MCScanX
(Wang et al., 2012) excludes most tandem gene arrays in synteny
analysis due to the difficulty of assigning true matches in these
arrays, matches between candidate genes in the region were ana-
lyzed in a phylogenetic manner. Peptide sequences were extracted
from each ortholog candidate gene and aligned using Custal
Omega (v1.2.4) within the ETE3 toolkit (v.3.1.2) (Huerta-Cepas
et al., 2016; Sievers & Higgins, 2018). ETE3 then executed the stan-
dard FastTree (v2.1) workflow for generation of a phylogenetic
tree (Price et al., 2010). Candidate gene orthologs Msy10g019590,
Mdg10g019850, and MD10G1207300 from M. sylvestris, Gala, and
GDDH13, respectively, were removed from the analysis due to
potential mis-joined annotations or fragmented structure/pseudo-
gene identity to facilitate more clear phylogenetic clade member-
ship. Syntenic orthologs were then classified by the clade
membership.
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