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The origin of octoploid strawberry has been the focus of several 
phylogenetic studies over the past decade (for example, refs. 1–3). Our 
previous study, using the octoploid genome and transcriptomes of 
every extant diploid Fragaria species, provided support for four spe-
cies (Fragaria vesca, Fragaria iinumae, Fragaria viridis and Fragaria 
nipponica) as the closest extant relatives of the diploids that contrib-
uted to the origin of octoploid strawberry4. In a response paper5, 
Liston et al. stated “that only two extand diploids were progenitors” 
with one subgenome being contributed by F. vesca and three by  
F. iinumae–like ancestors. Our reanalysis of the transcriptome 

data and comparative genomic analyses of a chromosome-scale  
F. iinumae genome support our previous model for the origin of 
octoploid strawberry4.

Liston et al.5 raised a concern regarding one of the steps in the 
phylogenetic analysis of the subgenome tree-searching algorithm 
(PhyDS) tool we developed to identify extant relatives of diploid pro-
genitors of allopolyploids. Specifically, they argue that we may have 
incorrectly identified F. viridis and F. nipponica as extant relatives 
because in-paralogs were excluded from our previous phylogenetic 
analysis4. Our reanalysis of the data using PhyDS, now including  
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Fig. 1 | Phylogenetic analyses. a, Number of genes from species identified as being sister to a homoeolog from the octoploid genome, by using PhyDS with 
bootstrap support value (BSV) cutoffs. Based on previous results4. b, Reanalysis of the data, including in-paralogs and BSV50 cutoff, identified the same 
progenitor species. The prevalence and biased patterns of homoeologous exchanges between subgenomes resulted in the dominant F. vesca subgenome 
replacing a greater number of corresponding regions in each of the recessive subgenomes4. Thus, a greater number of genes from the dominant F. vesca 
subgenome were identified, with the F. iinumae–like subgenome being second.
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in-paralogs, yielded results consistent with those presented in 
our previous study (Fig. 1; Supplementary Information and 
Supplementary Dataset 1). Furthermore, their alternative model for 
the origin of octoploid strawberry (1× F. vesca–like and 3× F. iinu-
mae–like subgenomes) is not supported by comparative genomic 
analyses of a new chromosome-scale F. iinumae genome (Fig. 2).

Phylogenetic analysis of the subgenome tree-searching algo-
rithm searched a set of gene trees to identify sequences most closely 
related to a set of user-provided paralogs (or homoeologs in poly-
ploids). Homoeologs are orthologous genes that were brought back 
into the same nucleus by allopolyploidization6. For our analyses, we 
used syntenic (that is, positionally conserved) homoeologs that were 
present on all subgenomes in octoploid strawberry. Gene trees were 

estimated using RAxML7 based on orthologs identified using estab-
lished orthogrouping approaches8 applied to de  novo assembled 
transcriptomes for each diploid Fragaria species4. PhyDS performs 
a relatively simple and straightforward analysis of gene trees. First, it 
identifies the user-provided paralog present in a gene tree and then 
moves to the direct ancestral node of the paralog. Second, PhyDS 
then returns to the user the direct descendants (that is, sequence 
identities including the paralog) of that ancestral node with its boot-
strap support value (Fig. 1).

We have two major concerns regarding the methods used in 
refs. 2,5. First, phylogenetic analyses aimed at estimation of species 
relationships are reliant first on correct identification of orthologs9. 
These authors used a sequence similarity-based approach to identify 
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Fig. 2 | Divergence of Ks rates among subgenomes. a, Synonymous substitution divergence for all syntenic genes between the F. iinumae and 
Fragaria × ananassa genomes4. The median Ks divergence values for the seven chromosomes previously assigned to each progenitor species are plotted. 
The F. iinumae and F. vesca subgenomes exhibit the lowest and highest Ks divergence, respectively. b–d, Ks analysis of F. iinumae (b), F. viridis (c) and F. 
nipponica (d) transcriptomes against the phylogenetically supported homoeolog in the octoploid genome. The Ks distributions of F. viridis and F. nipponica 
transcriptomes are both unique and distinct from that of F. iinumae.
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putative orthologs that has relatively high error rates10. Furthermore, 
pangenome studies have shown that up to one-half of gene content 
exhibits presence–absence variation at the species level in plants11. 
In other words, many genes are individual- or population-specific. 
Thus, many of the putative ortholog predictions in their studies may 
be inaccurate. Second, Liston et al.5 performed analyses of 100-kb 
windows across each of the seven base chromosomes. This could 
be problematic because chromosomal regions from one paren-
tal species can be replaced with chromosomal regions from the 
other parental species during meiosis in polyploids (referred to as 
homoeologous exchanges12). Homoeologous exchanges can range 
in size from large megabase-sized regions to single genes (see a 
recent review on its impact on subgenome assignment in ref. 13). We 
identifed extensive homoeologous exchanges throughout the octo-
ploid strawberry genome4. Thus, the 100-kb windows Liston et al. 
used consist of genes with different evolutionary histories reflecting 
each of the different progenitor species. This could result in inac-
curate estimates of species relationships.

Here we present a chromosome-scale genome of F. iinumae 
with a scaffold minimum scaffold length needed to cover 50% of 
the genome of 33.98 Mb and 23,665 protein-coding genes (see 
Supplementary Information). This genome was used to calculate 
the synonymous substitution (Ks) divergence between F. iinumae to 
each of the four subgenomes (Fig. 2a). This revealed that only one 
of the subgenomes of octoploid strawberry is F. iinumae–like, which 
does not support the model presented by Liston et al.5 that the ori-
gin of octoploid strawberry involved three F. iinumae–like and one 
F. vesca–like progenitor species. Instead, these results are consistent 
with our phylogenetic estimates supporting more than two diploid 
progenitors (Fig. 2b–d). The F. viridis (Fig. 2c) and F. nipponica  
(Fig. 2d) subgenomes are not F. iinumae–like.

Our new phylogenetic analyses support four distinct progenitor 
species, which is consistent with our previous results4 and that of 
other groups3. The conflicting results obtained by Liston et al.5 are 
probably due to differences in methodology. As pointed out above, 
establishing gene orthology is crucial for molecular phylogenetics. 
Our pipeline started by identifying high-confidence syntenic 1:1 
homoeologs present on each of the subgenomes. This step alone 
filtered out 82.1% of genes from the octoploid strawberry genome4. 
The number of genes analyzed in our study was further reduced due 
to absence across transcriptome data, stringent orthogroup filter-
ing and bootstrap value filtering. In short, more data are not always 
better if one introduces ‘phylogenetic noise’. It is unclear to us how 
Liston et al.5 obtained high unique mapping rates (~89% alignment) 
across the F. vesca genome, which consists of ~31% transposable ele-
ments and hundreds of duplicate genes. Furthermore, many genes 
are species-specific based on previous pangenome studies.

As pointed out by Liston et al.5, incomplete lineage sorting can 
impact phylogenetic inferences. However, that is far more likely 
to impact within-species than between-species estimates. This is 
exactly what was observed in our study. Other F. vesca subspecies 
were identified as contributors but were present at notably lower 
levels than F. viridis and F. nipponica (Fig. 1a). These patterns pro-
vide further support for F. viridis and F. nipponica as extant relatives 
of the progenitors that contributed to the origin of the interme-
diate hexaploid ancestor. Lastly, we did state that F. moschata 
may be an extant relative of the intermediate hexaploid ancestor. 
Given the high frequency of polyploid formation in Fragaria14 and  
birth–death dynamics of polyploids15, we agree it is possible that 

the hexaploid ancestor may be extinct. This remains to be properly 
evaluated using robust phylogenetic approaches and datasets.
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Data availability
The phylogenetic trees and alignments are available on Dryad (https://doi.org/10.5061/
dryad.b2c58pc). The genome assembly and annotation files are available on the 
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BioProjects PRJNA544784 and PRJNA508389. The raw sequence data are available in the 
Sequence Read Archive under the same NCBI BioProject numbers, PRJNA544784 and 
PRJNA508389.

code availability
Custom software for running PhyDS phylogenetic analyses is available on GitHub 
(https://github.com/mrmckain/PhyDS/).
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Extended Data Fig. 1 | Anchoring genome sequence to the genetic map. Previously a high-density linkage map of F. iinumae was constructed by 4173 
markers, with 3280 from the Array and 893 from genotyping by sequencing7. Here we anchored the contigs to this genetic map to obtain a chromosome-
scale genome of F. iinumae.
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